Solutions to Problem Set 2

1. (a) The mass is the integral of the density over the volume. In cylindrical coordi-
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The angular integral gives a factor of 2. The integral over z is
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since it is symmetric over +z, so we simply do the positive part, and multiply by two. The

nates this is

positive part is equal to hz, so we now have
o0
M = 47% / dRRe B/hx.
0

The R integral has dimensions of lengths squared, the only length is hg, so it goes as h%.

We’ve done the resulting dimensionless integral in class: it is simply one, so
M = 47Xoh%.

(b) The mass contained within a spherical radius r is simplified considerably if the
disk is very thin. Then, the mass in this volume is simply the integral of the surface density

2% ge B/hr gyer the disk out to radius r:
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Define x = R/hpg, so that dR = hrdz; then
T‘/hR
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Integrate by parts with u = x and dv = dxe™®. Then,
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In the first term, only the upper surface term contributes, and the second integral is —e™7*,
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Evaluating e=* at the r/hr and 0 and plugging back in leads to

M(r) = 4nXoh% [—ée—”’m — e "/hr 4 1] :

(¢) The velocity due to a point mass is simply GM (r)/r, so
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2. The three curves in the figure correspond to the exact Bessel function expression;
the approximation that the distribution is spherical (from Problem 1) and the even more

absurd approximation that all the mass is concentrated at a point in the center of the

galaxy.
3 I ‘ I I I I I I I I I I I I I I I I I I

- | -
!

- i

. i
|

- i

e 2 L | All mass at center —
S !

o ~ \ -
N I -
@) :

- \ —
= \
~— | \ i
N \
o — \ Exact —
Lol N
L \ -
- .\. —
- - T~ -~ \\-\
Spherical T~
-~ . —
/, Sy
, s
7
O 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1

3. (b) Let’s first write down the theoretical prediction for the velocity squared as a

function of radius. The contributions from the disk and from the dark matter halo sum in



quadrature, so

R? r
(VY[ R, ¥, po])? = 27‘(’GEOE [To(y)Ko(y) — I (y) K1(y)]+47Gpord |1 — ES arctan(R/ro)}I
where y = R/2hg and the second term from dark matter was derived in class. In this case
both hr(= 2.13 kpc) and ro(= 5 kpc) are fixed, so when comparing with the data we need
only minimize the 2 with respect to the two parameters ¥y and po.

To proceed, let’s write the above in a more compact form:
(v [R])? = A(R)%o + B(R)po

where the functions A and B are

A(R) = 272G () Kaly) — 1 (1)K (1)

and

B(R) = 4nGr? |1 — %) arctan(R/rg)| .

Again, the key point for what follows is that if you give me R I'll tell you A and B. We

can now write the x2 as

X2(po, To) = Y (v2 — A(R:))So — B(Ri)po)”

i=1
where ¢ now labels all the N = 395 data points; e.g. Ry = 0 and v; = 47.9 km/sec. We
want to minimize the x2 with respect to the variables ¥y and pg, so we differentiate it first

with respect to ¥¢ and then set to zero:

g—go =2 ; (”3 — A(R;)%0 — B(Ri)po) A(R;) = 0.

Then do the ssame thing with respect to pg:

g—go =2 ZZ: (v; — A(R:)E0 — B(Ri)po) B(R:) = 0.

We now have two equation for two unknowns. Let’s solve them to find the extremum

of the x2. The first equation can be rearranged to give

Y (VP A(R) — A(R;)*%0)
P Y B(R)A(R,) (1)
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There are going to be lots of sums over A(R;) and B(R;). To simplify the notation, let’s
define

(Ad) =D A(R:)A(R:)
and similarly for (AB) and (BB). Then,

(vvA) — (AA)Y,
(AB) '

Po =

Simimlarly the second equation can be rewritten as

{vvB) — (BB)po

Into this equation, plug in our expression for pg to get

(vvB) — (BB) —<WA)(Z%A)EO]

o= (AB)

Moving the ¥y term on the right over to the left leads to

(vvB){AB) — (BB)(vvA)

Yo [1 - <BB><AA><AB>2] = (AB)?

and then multiplying both sides by (AB)? and dividing by the ressulting term in square
brackets on the left leads to

(vvB){(AB) — (BB){(vvA)

0= T(AB)2 — (BB){AA)

an explicit expression for the surface density of the disk in terms of sums over the data

and over A and B.
When I do the sums, I get:

(vwA) = ZviviA(R,-) = 166 (km sec_1)4M51kpc2

and

(vvB) = ZviviB(Ri) = 3634 (km sec_l)4 Mg 'kpc®
i

4



for the sums over the velocities. The other sums are
(AA) = 33.5 x 1078 (km sec™ )" M kpc*

and

(BB) =1.42 x 10~* (km sec_l)‘LM(fkpc6

and the cross-term

(AB) =5 x 107° (km sec_1)4M52kpcs.

So plugging in, I get

Yo = 2.4 x 108 Mgkpe ™2

Plugging back into Eq. 1 gives

po = 1.7 x 10" Mgkpc ™2
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Problem 24.1 Let’s do this the GR way. The geodesic equation is

(2
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In cartesian coordinates the Christoffel symbol is zero, so both x and y satisfy d?z*/dt? = 0.
Now let’s consider polar coordinates, in which z! = R,z2 = 0. It is straightforward to

show that

1
F122 =—R ) I1221 = I1212 = R

and all other components vanish. Then,

d_ﬂfl_R__l.dij@
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The only non-zero component of I'! ;4 is with j = k = 2, so
.. A 2 .
ft =Ty (6)" = RE®.
This is indeed the equation for R. Th equation for 6 is
d?z? . , dz? da¥

—f=_T12, "
dt2 IR G dt

One of the indices must be equal to 1 and the other to 2 for I'?j; to be non-zero. Both

terms contribute equally leaving

. 2 ..
0 =——R0.
R
This can be rewritten as
) 1d g
O+ R0 == (R 0) —0

the correct equation for conservation of angular momentum.



